
Turtles All The Way Down:
Research Challenges in User-Based Attestation∗

Jonathan M. McCune Adrian Perrig Arvind Seshadri Leendert van Doorn
CMU/CyLab CMU/CyLab CMU/CyLab AMD

A scientist once gave a public lecture describing how
the Earth orbits around the sun and how the sun, in turn,
orbits around the center of a collection of stars called our
galaxy.

At the end of the lecture, a little old lady at the back
of the room got up and said: “What you have told us is
rubbish. The world is really a flat plate supported on the
back of a giant tortoise.”

The scientist gave a superior smile before replying,
“What is the tortoise standing on?”

“You’re very clever, young man, very clever,” said the
old lady, “but it’s turtles all the way down!”

Abstract
Current trusted computing technologies allow comput-

ing devices to verify each other, but in a networked world,
there is no reason to trust one computing device any more
than another. Treating these devices as turtles, the user
who seeks a trustworthy system from which to verify oth-
ers quickly realizes that it’s “turtles all the way down”
because of the endless loop of trust dependencies. We
need to provide the user with one initial turtle (the iTur-
tle) which is axiomatically trustworthy, thereby breaking
the dependency loop. In this paper, we present some of
the research challenges involved in designing and using
such an iTurtle.

1 Introduction

Internet-connected computing devices feature complex
software stacks which are often riddled with remotely-
exploitable software vulnerabilities. Attackers can exploit

∗This research was supported in part by CyLab at Carnegie Mellon
under grant DAAD19-02-1-0389 from the Army Research Office, and
grant CCF-0424422 from the National Science Foundation, and equip-
ment donations from AMD. The views and conclusions contained here
are those of the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either express or implied,
of AMD, ARO, CMU, NSF, or the U.S. Government or any of its agen-
cies.

Computing

Device

What code are

you running?

Code List

User

?

Bank

(Verifier)

Figure 1: Remote attestation does not create an authenticated
channel between the verifier and the user. If verification fails,
there is no way to inform the user. Thus, malware on the user’s
computing device can lie about verification results.

these vulnerabilities to inject malware. The malware situ-
ation is made worse by the feature creep in software and
the continuous introduction of new devices with vulnera-
ble software on the Internet.

In order to use their computing devices with confi-
dence, users need to know if the software on their comput-
ing devices is infected by malware. The Trusted Comput-
ing Group (TCG) has proposed the mechanism of remote
attestation to achieve this goal [14]. Remote attestation
enables a remote verifier to learn the configuration of the
software on any TCG-compliant computing device. The
verifier can compare this configuration to a known-good
configuration to detect deviations.

The TCG’s remote attestation mechanism encounters
at least three problems when we want to adapt it to user-
based attestation. All three problems arise because the
user does not have an axiomatically trustworthy device
to perform verification. (1) The chain of trust created
through the verification process does not propagate back
to the user, because there is no authenticated channel be-
tween the user and the verifier (see Figure 1). (2) In a
networked world, it is unclear to the user why the device
that she uses as the verifier is any more trustworthy than
her other devices. (3) Platform and user privacy are issues
under TCG attestation. We present scenarios which will
illustrate the above problems.



Security-Sensitive Interactive Transactions. Consider
a user who wants to perform online banking using her
computer. If the bank’s server is TCG-aware and the
user’s computer is TCG-compliant, then the bank’s server
can request an attestation from the user’s computer to ver-
ify that the user’s computer is running an approved soft-
ware stack. If the server detects an unapproved software
stack, then it can refuse service.

The problem with the above scenario is that there is
no way for the bank’s server to securely inform the user
of the verification result (see Figure 1). If verification is
unsuccessful, the user’s computer cannot be trusted to dis-
play the correct result, since any notification mechanism
that displays the verification result on-screen is vulnera-
ble to spoofing. Malware installed on the user’s computer
could lie to the user that the attestation verified correctly
at the bank, display a fake login page, and capture the
user’s login credentials.

There are two popularly suggested solutions to the
problem of establishing an authenticated channel between
the user and the bank: side-channels and trusted I/O.
Automated side-channels use means of communication
other than the user’s computer to establish an authenti-
cated channel. For instance, the bank’s computer can send
SMS messages or make telephone calls to convey the ver-
ification result to the user. However, any unauthenticated,
automated side-channel may facilitate automated attack.
Using a side-channel that is not automated, such as hav-
ing a customer service representative make a phone call,
is also not an option since the attacker can pretend to be a
bank employee (a fact amply demonstrated by social en-
gineering attacks). Besides, a non-automated side chan-
nel makes the verification expensive and potentially error
prone by introducing additional human factors.

Upcoming trusted computing technologies, such as
AMD’s Presidio [1] and Intel’s Trusted Execution Tech-
nology (TXT, formerly LaGrande) [5], which include
hardware mechanisms for trusted I/O, do not solve the
problem of establishing an authenticated channel between
the user and the bank either. While they do include mech-
anisms for establishing trusted channels between platform
components, they do not require any display to indicate
that the channel is present [8]. Even if, in the future, these
hardware technologies are extended to address this short-
coming, legacy systems will remain a problem.

The online banking example can be extended to any
security-sensitive interactive transaction, such as remote
login or e-commerce. One may also wish to consider how
the problem presented in the above example can be ap-
plied to the examples in Chapter 2 of Balacheff et al. [3].

We believe that the best approach is for the user to use
TCG load-time attestation to directly verify her own com-
puter. This would allow the user to trust her computer
(to the extent guaranteed by load-time attestation) to cor-
rectly display messages sent by the bank.

Specialized Computing Devices. Next, consider spe-
cialized computing devices such as 802.11 access points,
home routers, GPS navigation systems, and printers.
These devices may also contain information or perform
tasks that users consider to be security-sensitive (e.g., the
integrity of their map data, the secrecy of their printed
documents, or the privacy of their photographs), making
them attractive targets for malware.

It is unclear how to apply TCG-style remote attestation
to these devices, because, in a networked world, the ab-
sence of an axiomatically trusted device means that the
choice of which device to use as the verifier is not obvi-
ous. For example, it is unclear why the user should trust
their cell phone to function as a verifier any more than
they trust their laptop or desktop computer. Note also that
today’s attacks have moved “up” the software stack (e.g.,
cross-site scripting) and may apply to many device types.
Furthermore, a third-party remote verifier cannot be used,
even if one existed (no such verifiers exist today), since
we re-encounter the problem of how to establish an au-
thenticated channel between the user and verifier. Also,
the user may not want to employ third-party verifiers due
to privacy concerns.

Privacy Issues. During attestation, the verifier learns
information about the challenged platform, including its
TPM identity and software configuration. If the verifier is
able to use any of this information to uniquely identify the
challenged platform, then the verifier may be able to link
the user to her platform (via, e.g., a single e-commerce
transaction), thereby tracking the user’s future interac-
tions with that verifier.

The TCG has proposed Privacy CAs and Direct Anony-
mous Attestation (DAA) to anonymize the TPM used for
attestations [14]. However, both of these schemes have
complete privacy problems [4, 9]. Further, there are no
known solutions to the problem of information leakage
resulting from the inclusion of the software configuration
of the platform in attestations. Property-based attestation
is one proposed approach that tries to address the privacy
issue of disclosing software configuration [11].

Enabling the user to verify her own computer would
alleviate these privacy problems. Further, the user can
set privacy policies on her computer with respect to re-
mote attestations and trust the software on her computer
to adhere to them (to the extent guaranteed by load-time
attestation).

Contributions. So far, we have argued that providing
the user with a device (the iTurtle) which is axiomatically
trusted for verification purposes is a good way to address
the shortcomings of TCG-style attestation. We further
present some of the research challenges that arise when
thinking about how to design and use such an iTurtle.



Computing

Device

iTurtle

User

OK Green

Light
Computing

Device

iTurtle

User

!!! RED

Light

Figure 2: Hypothetical scenario showing the use of the iTurtle.
On the left, the user learns that her computing device is trust-
worthy. On the right, the user learns that her computing device
has a problem.

2 User-Observable Verification

We have discussed why current TCG attestation does not
provide user-observable verification. Here, we conjecture
how one might design a system for user-observable veri-
fication, including what some of the desired properties of
such a system might be. This will set the stage for Sec-
tion 3, where we detail open research issues.

2.1 Possible Approaches

Computing Devices that Self-Verify. Self-verification
is not an option on today’s computing devices, as we can-
not trust a potentially compromised device to report its
status correctly. Future architectures may change this.
One possibility is to include a trustworthy verification
subsystem in every device. However, there is still the
problem of how to communicate the result of the verifica-
tion to the user. One could imagine adding secure I/O ca-
pabilities to devices to communicate verification results to
the user, although such a design choice may increase the
cost and complexity of the trustworthy subsystem. Fur-
thermore, if every manufacturer designs their own user-
interface for verification, then the user will be confronted
with many different interfaces. This could cause confu-
sion, increase the frequency of mistakes, and degrade the
users’ experience, all of which could result in users disre-
garding the verification process altogether.

Trustworthy External Device. Instead of a dedicated
verification subsystem inside every device, we could build
a single verification device. This alleviates the problem of
the user having to learn and use several different verifica-
tion interfaces. In our opinion, this is the most desirable
solution from the point of view of ease of use. This ded-
icated device provides an unambiguous point from which
trust originates for the user. We call this device the iTurtle,
based on analogy with the “Turtles All the Way Down”
story, because it is the turtle on which all other turtles
stand, i.e., it is the turtle on which all user trust is built.
Figure 2 portrays the iTurtle in use.

2.2 Desired Properties

Software Design Simplicity. The software on the iTur-
tle should be small, since it should be amenable to formal
verification or manual audit for security assurance. The
software design should avoid the use of cryptographic se-
crets to eliminate the overhead involved with their mainte-
nance. Such overheads include the use of tamper-resistant
or tamper-evident hardware, key management issues like
revocation, migration, and regeneration, and vulnerabili-
ties due to lost or stolen iTurtles.
Commodity Hardware. Using commodity hardware
will enable inexpensive mass-production of iTurtles. Por-
tions of the software can be borrowed from existing code.
Many of the bugs inherent in a new hardware design will
have been removed or have known work-arounds. A ma-
ture developer community will exist to support iTurtle de-
velopers.
Universal Physical Connectivity. The iTurtle should
use a ubiquitous physical interface. Probably the best
choice today would be USB. A USB-based iTurtle would
have the ability to act as a master or slave device, and
would be equipped with adapters for the different USB
plug sizes.
Wired Interface. The temptation to use wireless inter-
faces must be avoided, because without physical connec-
tivity, there is no way (without the use of cryptography)
for the human to unambiguously identify the device be-
ing verified by the iTurtle. Note that using a wired inter-
face still does not address a relay attack where the chal-
lenged machine relays an attestation request to another
machine [13].
User Interface Simplicity. The interface which tells the
user whether or not verification succeeded should be sim-
ple enough to be used by untrained novice users. Sim-
plicity of the user interface should also minimize the op-
portunities for user error. An example of a simple user
interface is a dual-color LED capable of showing a red or
a green light, as shown in Figure 2.
Small Form Factor. The iTurtle should be small,
lightweight, and rugged. This will enable users to always
carry the iTurtle with them, e.g., on a keychain.

2.3 Our Proposed Verifier
Based on our desired properties, a USB fob designed with
a commodity microprocessor would be a good candidate
for the iTurtle. Such hardware already exists and is avail-
able inexpensively.

3 Research Issues

Research challenges arise when we try to build a verifica-
tion system using the iTurtle.



3.1 What to Verify
Attestation mechanisms verify the software configuration
of a computing device, raising the question: How do we
define the software configuration of a computing device?
Below we consider two possible answers, and note their
difficulties.

Attestation schemes proposed in the literature treat the
software configuration of a computing device as all soft-
ware that has been loaded for execution since the last re-
boot [2, 6, 12, 14]. However, even with a small set of in-
stalled software, the number of possible software config-
urations can be large. This is because the number of pos-
sible configurations is the number of permutations of the
subset of loaded software from the set of all installed soft-
ware. Some of the problems for the iTurtle include: (1)
How does the iTurtle attach meaning to all of these dif-
ferent configurations? (2) How does the iTurtle store so
many different configurations for many different devices?

An alternate scheme would be to define a software con-
figuration as the list of all software that is installed on the
device. However, this definition does not take into consid-
eration the problems that arise due to interactions between
different software components.

We must also consider the question of how to represent
the software configuration of a device, i.e., how to assign
identities to software. Another question is how to translate
a software configuration into a trust decision.

3.2 How to Verify
We now discuss how the iTurtle might verify the software
on a computing device, and we identify open research is-
sues. The verification process consists of comparing the
software configuration of the device being verified against
known-good configurations.

What is a known-good configuration? The user must
somehow translate their notion of trust into a set of
known-good software configurations. This is a problem
with no clear solution. The issue is the semantic gap be-
tween a list of program identities and the nebulous notion
called trust. The vendor of a computing device might be
able to help the users by providing some default known-
good configurations for the device.

How does the iTurtle obtain known-good configura-
tions the first time? With trusted computing today, there
are at least two possible ways to address this problem. (1)
The Oracle Method retains a trusted third party as a read-
only oracle which provides a list of known-good software
configurations to the iTurtle. (2) The Trusted First Time
(TFT) Method assumes that the system is in a secure state
the first time it is verified and compares all subsequent
verifications against the first one.

With our verification model, both of these approaches
have unresolved issues. Questions which arise with the
Oracle Method include: (1) How does the iTurtle establish

an authenticated channel to the oracle? (2) How does the
user ensure that their privacy is not compromised through
oracle queries?

Question (1) does not arise with TCG-style attestation
because the verifier is assumed to be a properly configured
general-purpose computing device, whereas the iTurtle is
a special-purpose device with limited capabilities. Thus,
no sufficiently secure method exists today that would al-
low the iTurtle to learn known-good configurations. TCG-
style attestation tries to address question (2) with tech-
niques such as Privacy CAs [14] or Direct Anonymous
Attestation [4]. However, these techniques are too heavy-
weight for the iTurtle.

An important question for the TFT Method is: How
does the iTurtle distinguish between a legitimate installa-
tion or upgrade and an attack? The user must somehow
convey to the iTurtle that a legitimate upgrade or instal-
lation is taking place. Doing this without increasing the
complexity of the iTurtle is a challenge.

An additional question for verification is: How does the
user use the same iTurtle to verify multiple devices? The
issue here is one of authenticating the device being veri-
fied so that the iTurtle uses the correct known-good con-
figuration during verification. Since the iTurtle does not
employ cryptography (recall Section 2.2), we cannot em-
ploy cryptographic authentication methods [7, 13]. Also,
interoperability demands a standard protocol for commu-
nication between the device and the iTurtle. Standardizing
such a protocol is an engineering and political challenge.

3.3 What to Do When Verification Fails
Most trusted computing literature does not address proce-
dures for recovering if verification fails, raising the fol-
lowing questions.

How does recovery happen? If the device is compro-
mised, then a trusted entity (the recovery agent) must be
involved in recovery. The recovery process may also need
to involve the user; however, the level of user expertise
required is unclear. It may be necessary to have an expert
such as an ISP, a device vendor, or a third party service
perform the recovery for a fee. The infrastructure required
for involving an expert may be prohibitive.

Where is the recovery agent? The recovery agent can
be part of the iTurtle, part of the device, or some combi-
nation of both.

If the recovery agent is located on the device, then,
for secure recovery, it needs to be isolated from all other
software on the device, and the user needs to know that
it launched correctly. Technologies such as AMD Pre-
sidio [1] and Intel TXT [5] provide only partial solutions
in that they only address the isolation issue but do not pro-
vide the user with the guarantee of correct launch.

If the recovery is performed completely by the iTurtle,
then we could design a Snapping iTurtle to help revert



(“snap”) the system state back to a previously known-
good state. However, it is unclear how the iTurtle can
obtain sufficient control of the device to perform the snap
operation without involving any entity on the device. One
approach is to make the iTurtle a bootable device contain-
ing a known-good system image.

Performing recovery using a combination of the device
and the iTurtle might be a practical approach, but addi-
tional work is required to discover the details of which
operations need to be performed by each of them.

How is recovery initiated? Is it user-invoked or auto-
matic? Both choices have usability issues. User-invoked
recovery gives more control to the user but becomes an-
noying if failure is frequent. Equipping the iTurtle with
dedicated hardware to accept the user’s recovery request
increases its cost and complexity. Automatic recovery re-
moves control from the user, which could also destroy
data, interrupt critical work, etc.

3.4 Trusting the iTurtle
How can the user trust her iTurtle? Since the user can-
not directly verify her iTurtle, the only currently available
approaches are for the manufacturer of the iTurtle to cer-
tify it, or for a trusted third party to certify it, perhaps for
a fee. Certification requires standards to be established
for the hardware and software components of the iTurtle.
If the resulting standard is complex, then certification as
well as conformance to standards will be hard. The certifi-
cation process of TPMs demonstrates this [10]. Thus, we
believe there are no satisfactory answers to this question
today.

What if the iTurtle is compromised? We would like to
avoid the use of tamper-evident or tamper-resistant hard-
ware, therefore, iTurtle compromise is an issue. The chal-
lenges here are: (1) How does the user detect the com-
promise? (2) When the user detects that her iTurtle is
compromised, what should she do?

Periodic inspection and recertification, and fault tol-
erant design work well for issues that arise due to nor-
mal wear and tear, but they are insufficient to address (1)
above. For (2), discarding and replacing the iTurtle is not
a good answer, because the user will need to reconfigure
the new iTurtle to suit her attestation preferences.

4 Conclusion

We have argued for user-observable verification and out-
lined a possible system and some of the research issues
remaining. User-observable verification lends strong pri-
vacy properties to trusted computing technologies since
the verification process is completely controlled by the
user of the computer. Also, users are free to modify and
use their computing devices in any way they see fit, even
as they do today, while enjoying the security benefits of

trusted computing. We hope that user-observable verifica-
tion will alleviate concerns that trusted computing exists
solely for enforcement purposes.

Perhaps in the future the world of attestation will rest
on an iTurtle!

Acknowledgements

The authors are grateful to Bryan Parno for his comments
and for suggesting the title. The paper also benefited from
the insightful feedback of Jesse Walker, Ahren Studer, Ja-
son Franklin, and the anonymous reviewers.

References

[1] Advanced Micro Devices. AMD64 virtualization: Secure vir-
tual machine architecture reference manual. AMD Publication no.
33047 rev. 3.01, May 2005.

[2] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A reliable bootstrap
architecture. In Proceedings of the IEEE Symposium on Security
and Privacy, May 1997.

[3] B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and G. Proudler.
Trusted Computing Platforms – TCPA Technology in Context.
Prentice Hall, 2003.

[4] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attes-
tation. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2004.

[5] Intel Corporation. Trusted execution technology – preliminary ar-
chitecture specification and enabling considerations. Document
number 31516803, November 2006.

[6] J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W.
Smith, and S. Weingart. Building the IBM 4758 Secure Coproces-
sor. IEEE Computer, 34(10):57–66, 2001.

[7] K. Goldman, R. Perez, and R. Sailer. Linking remote attestation to
secure tunnel endpoints. Technical Report RC23982, IBM, June
2006.

[8] D. Grawrock. The Intel Safer Computing Initiative: Building
Blocks for Trusted Computing. Intel Press, 2006.

[9] C. Rudolph. Covert identity information in direct anonymous at-
testation (DAA). In Proceedings of the Workshop IFIP TC11 WG
9.6 / 11.7, May 2007.

[10] A.-R. Sadeghi, M. Selhorst, C. Stüble, C. Wachsmann, and
M. Winandy. TCG inside? A note on TPM specification compli-
ance. In Proceedings of the ACM Workshop on Scalable Trusted
Computing (STC), 2006.

[11] A.-R. Sadeghi and C. Stüble. Property-based attestation for com-
puting platforms: Caring about properties, not mechanisms. In
Proceedings of the 2004 workshop on New Security Paradigms
(NSPW), 2004.

[12] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and im-
plementation of a TCG-based integrity measurement architecture.
In Proceedings of USENIX Security Symposium, 2004.

[13] F. Stumpf, O. Tafreschi, P. Röder, and C. Eckert. A robust integrity
reporting protocol for remote attestation. In Proceedings of the
Workshop on Advances in Trusted Computing (WATC), November
2006.

[14] Trusted Computing Group. Trusted platform module main speci-
fication, Part 1: Design principles, Part 2: TPM structures, Part 3:
Commands. Version 1.2, Revision 94, March 2006.


